APPENDIX H: VISUAL ASSESSMENT FOR SCENIC REVIEW

This document explains how to calculate a contrast rating score and provides space to calculate the score for your property. Alternatively, you can use the contrast rating spreadsheet available on the TRPA website to calculate your score.
I. VISUAL MAGNITUDE/CONTRAST RATINGS PROCEDURAL STEPS

Step 1: Determine the square footage of differing surfaces (i.e., roof, windows, shingle, stone) by direct measurement of the buildings/structures on the project area from elevation views. Measure square footage to the nearest square foot or with greater precision.

Step 2: Determine the percentage of each differing surface in relation to the overall square footage of the façade facing the lake. Round the percentage to the nearest 0.1 percent.

Calculate Steps 1 \& 2: (Surface Square Footage and Percent Total)

Surface	Lakefront Façade (sq.ft.)	Percent of Total
Example: Cedar Siding	1,040 sq.ft.	69%
Total Lakefront Facade		

Step 3: Utilize the Color Matrix below to determine the rating for each differing surface except glass (which is rated in step 4). Use the percentage of each differing surface and multiply by the appropriate rating. Round the result for each surface to the nearest 0.1. The sum of these results is your Color Score. For unique site conditions where the dominant color in the background is gray or green, the Brown to Black category may be used for scoring.

Color Matrix	Light/Gloss (Munsell Color Value 7+)	Med. Light (Munsell Color Value 6)	Medium (Munsell Color Value 5)	Med. Dark (Munsell Color Value 4)	Dark/Flat (Munsell Color Value 0-3)
White to Light Gray	1	2	3	4	5
Yellow	2	3	5	6	8
Red	3	5	6	8	10
Blue	4	6	8	10	12
Gray	5	7	9	12	15
Green	6	8	11	13	16
Brown to Black	8	10	12	15	17

Step 4: Utilize the Glass Matrix below to determine the rating for all glass surfaces facing the lake. Determine the Visible Light Reflectance/Reflection Value provided by the glass manufacturer and determine the appropriate rating. Multiply the rating and the percentage of glass facing the lake derived in Step 2 above. Round the result to the nearest 0.1. This is your Reflectance Score. Steps 3 and 4 combined are your color and reflectance score.

Glass Matrix	
Visible Light Reflectance/Reflection (\%)	Rating
>15	1
$>13-15$	2
$>11-13$	3
$>9-11$	4
$>7-9$	5
$>5-7$	6
$>3-5$	8
$0-3$	

Calculate Steps 3 \& 4 (Color \& Reflectance Score)

Surface Materials	Munsell Color	Percent Total		atin		Weighted Average
Ex. Cedar Siding	5YR 6/6	69	X	10	$=$	6.9
Ex. Windows	>15\%	3025	X	1	$=$	0.325
			X		$=$	
			X		$=$	
			X		$=$	
			X		=	
			X		$=$	
			X		$=$	
			X		$=$	
			X		$=$	
Color \& Reflectance Score		Total			$=$	

Step 5: Determine the number of plane surfaces visible. The visible plane column will be used in Step 6 to determine the appropriate rating.

Step 6: \quad Determine the appropriate surface pattern for each differing surface determined in Step 1. Using the Surface Plan \& Texture Matrix below and the appropriate visible plane column from Step 5 , assign an appropriate rating and multiply it to the percentage of each differing surface derived from Step 2. Round the result to the nearest 0.1 . Sum the results to get your Surface Plan/Texture Score.

Surface Plane \& Texture Matrix	Number Planes				
	1 Plane	2 Plane	3-4 Planes	5-6 Planes	7 or more Planes
Surface Plane with no Texture	1	2	3	4	5
Surface Plane with Minimal Pattern	2	3	4	5	6
Texture	Surface Plane with Moderate Texture	3	4	5	6
Surface Plane with Heavy Texture	4	5	6	7	8

Calculate Steps 5 \& 6 (Surface Plane/Texture Score)

Number of Planes: Surface Materials	Texture	Percent Total				Weighted Average
Ex. Cedar Siding	Moderate texture	69	X	5	$=$	3.5
			X		$=$	
			X		$=$	
			X		$=$	
			X		$=$	
			X		$=$	
			X		=	
			X		=	
			X		$=$	
			X		$=$	
Surface Plane/Texture Score		Total			=	

Step 7: From the critical viewing point 300 feet offshore, estimate the percent of the building/structure perimeter that is visible. Then determine the rating on the Perimeter Matrix below. This rating is your Perimeter Score.

	Percent of Perimeters of Structure Visible									
	oㅇ	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { O} \\ & \text { ¿̀ } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { +̀ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ơ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ò } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ○ㅇ } \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { oㅇ } \\ & \text { ס̀ } \\ & \text { ○ } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ò } \\ & \text { © } \end{aligned}$	O O O ¢
Rating	10	9	8	7	6	5	4	3	2	1

90-100\%

70-80\%

50-60\%

80-90\%

60-70\%

40-50\%

Calculate Step 7 (Perimeter Score)
Example:

Visible Perimeter	50 I.f.	/	Entire Perimeter	$151 \text { I.f. }$	$=$	Percent Perimeter Visible	33\%

Step 8: Add the three scores (Color \& Reflectance Score, Perimeter Score, and Surface/Texture Score) and round up to the next to the nearest whole number. This is the CONTRAST RATING.

Calculate Step 8 (Contrast Rating Score)

Color \& Reflectance Score \qquad $+$

Surface Plane/Texture Score \qquad $+$

Perimeter Score \qquad $=$

Contrast Rating Score \qquad

Step 9: \quad Repeat Steps 1-8 for each visible building/structure in the project area. Each will have a separate contrast rating score. Multiply each buildings/structure's contrast rating by its percentage of the overall lakefront façade and sum the results. Round up the next whole number. This is the Composite Contrast Rating for the project area.

Step 10: Using the Visual Magnitude/Contrast Rating table, move down the Contrast Rating Column until you reach the Contrast Rating determined in Step 9. The column on the right indicates the visual square footage allowed based on the score.

Contrast Rating Score	Visible Area allowed (sq.ft.)	Contrast Rating Score	Visible Area allowed (sq.ft.)
3	55	20	595
4	63	21	680
5	73	22	785
6	84	23	900
7	97	24	1035
8	110	25	1190
9	120	26	1365
10	150	27	1565
11	195	28	1800
12	225	29	2000
13	260	30	2200
14	295	31	2400
15	340	32	2600
16	390	33	2800
17	450	34	3050
18	515	35	3300
19			

Step 11: $\quad \begin{aligned} & \text { Determine the existing visible area of the structures in the project area. Round to the } \\ & \text { nearest square foot. }\end{aligned}$

Calculate Step 11 (Existing Visible Area)

Lakefront Façade \qquad -

Area Screened from 300' offshore \qquad $=$

Visible Area \qquad

Step 12: Determine the remaining allowable visible area by subtracting the existing visible area (calculated in Step 11) from the allowed visible area (calculated in Step 10)

Calculate Step 12 (Remaining Allowable Visible Area)

Total Allowed Visible Area I.f. -

Existing Visible Area I.f. $=$

Remaining Allowable Visible Area \qquad

II. DEFINITIONS AND INFORMATION

DEFINITIONS RELATED TO THE BASELINE SCENIC ASSESSMENT

Shoreland: The distance from the highwater line of Lake Tahoe to the most landward boundary of the littoral parcel, or 300 feet landward, whichever is less. In the case where the littoral parcel is a narrow parcel not qualifying for a development right, such as a road right-of-way or dedicated beach access parcel, the most landward boundary of the adjoining parcel to the littoral parcel or 300 feet shall apply. In the case where a littoral parcel is split by a right-of-way but is considered one project area, the most landward boundary of the project area or 300 feet, whichever is less, shall apply.

Lakefront Façade: Surface of the lakefront elevation(s) for all primary and accessory buildings and other structures, with visible area for a given project area within the shoreland.

Visible Area: Surface area of all structures in the shoreland visible from 300 feet offshore and generally perpendicular to and centered on the project area. Surface area blocked by man-made structures in the shorezone shall count as visible area

EXAMPLE ELEVATION DRAWINGS

ELEVATION DRAWING DETAIL

Include all buildings and structures in lakefront elevation drawing(s). Each building/structure will recieve a seperate contrast rating score. These scores are combined to determine an aggregate score for the entire project area.

ELEVATION OUTLINE DETAIL

