Appendix D

Noise Calculations

Summary of Boating Activity Changes Associated with each Alternative

Peak Day Boating Trips									
Structure	Existing	With Alt 1	<u>increase</u>	<u>with alt 2</u>	<u>increase</u>	with alt 3	<u>increase</u>	<u>with alt 4</u>	<u>increase</u>
Buoy	1050	1551	48	2268	116	1125	7	1050	0
Slip	1478	1501	2	2161	46	1501	2	1478	0
Boat House	27	27	0	27	0	27	0	27	0
Boat lift	93	109	17	152	63	103	11	93	0
Boat Ramp	2492	2719	9	3171	27	2605	5	2492	0
Marina	49	49	0	49	0	49	0	49	0
Rental concessions	710	710	0	710	0	710	0	710	0
Total	5899	6666	13	8538	45	6120	4	5899	0

Construction Source Noise Prediction Model- Pier Construction Leg

	Distance to Nearest	Combined Predicted		Reference Emission Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eg} dBA)	Equipment	feet	Factor
Threshold			Impact Pile Driver	95	0.2
Residence 1					

Ground Type	soft
Source Height	8
Receiver Height	5
Ground Factor ²	0.63

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Impact Pile Driver	88.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 88.0

Sources:

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*\log (U.F.) - 20*\log (D/50) - 10*G*\log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Construction Source Noise Prediction Model- Pier Construction Lmax

Location	Distance to Nearest Receptor in feet	Combined Predicted Noise Level (L _{ea} dBA)	Equipment	Reference Emission Noise Levels (L _{max}) at 50 feet ¹	Usage Factor ¹
Threshold			Impact Pile Driver	95	1
Residence 1			_		

Ground Type	soft
Source Height	8
Receiver Height	5
Ground Factor ²	0.63

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Impact Pile Driver	95.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 95.0

Sources:

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*\log (U.F.) - 20*\log (D/50) - 10*G*\log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Construction Source Noise Prediction Model- Boat Ramp Leq

lesstics	Distance to Nearest Receptor in feet	Combined Predicted	Faciliament	Reference Emission Noise Levels (L _{max}) at 50 feet ¹	Usage Factor ¹
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	teet	Factor
Threshold			Crane	85	0.16
Residence 1			Excavator	85	0.4
			Front End Loader	80	0.4

Ground Type	soft
Source Height	8
Receiver Height	5
Ground Factor ²	0.63

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Crane	77.0
Excavator	81.0
Front End Loader	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 83.4

Sources:

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*\log (U.F.) - 20*\log (D/50) - 10*G*\log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Construction Source Noise Prediction Model-Boat Ramp Lmax

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eg} dBA)	Equipment	feet ¹	Factor ¹
Threshold	1,757	50.0	Crane	85	1
Residence 1		#NUM!	Excavator	85	1
		#NUM!	Front End Loader	80	1

Ground Type	soft
Source Height	8
Receiver Height	5
Ground Factor ²	0.63

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Crane	85.0
Excavator	85.0
Front End Loader	80.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet) 88.6

Sources:

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*\log (U.F.) - 20*\log (D/50) - 10*G*\log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Equipment Description	Acoustical Usage Factor (%)	Spec 721.560 Lmax @ 50ft (dBA slow)	Actual Measured Lmax @ 50ft (dBA slow)	No. of Actual Data Samples (count)	Spec 721.560 LmaxCalc	Spec 721.560 Leq	Distance	Actual Measured LmaxCalc	Actual Measured Leq
Auger Drill Rig	20	85	84	36	79.0	72.0	100	78.0	71.0
Backhoe	40	80	78	372	74.0	70.0	100	72.0	68.0
Bar Bender	20	80	na	0	74.0	67.0	100		
Blasting	na	94	na	0	88.0		100		
Boring Jack Power Unit	50	80	83	1	74.0	71.0	100	77.0	74.0
Chain Saw	20	85	84	46	79.0	72.0	100	78.0	71.0
Clam Shovel (dropping)	20	93	87	4	87.0	80.0	100	81.0	74.0
Compactor (ground)	20 40	80	83 78	57	74.0 74.0	67.0 70.0	100 100	77.0 72.0	70.0
Compressor (air) Concrete Batch Plant	40 15	80 83	78 na	18 0	74.0	68.7	100	72.0	68.0
Concrete Mixer Truck	40	85	79	40	79.0	75.0	100	73.0	69.0
Concrete Pump Truck	20	82	81	30	76.0	69.0	100	75.0	68.0
Concrete Saw	20	90	90	55	84.0	77.0	100	84.0	77.0
Crane	16	85	81	405	79.0	71.0	100	75.0	67.0
Dozer	40	85	82	55	79.0	75.0	100	76.0	72.0
Drill Rig Truck	20	84	79	22	78.0	71.0	100	73.0	66.0
Drum Mixer	50	80	80	1	74.0	71.0	100	74.0	71.0
Dump Truck	40	84	76	31	78.0	74.0	100	70.0	66.0
Excavator	40	85	81	170	79.0	75.0	100	75.0	71.0
Flat Bed Truck	40	84	74	4	78.0	74.0	100	68.0	64.0
Front End Loader	40	80	79	96	74.0	70.0	100	73.0	69.0
Generator	50 50	82 70	81 73	19 74	76.0 64.0	73.0 61.0	100 100	75.0 67.0	72.0 64.0
Generator (<25KVA, VMS s Gradall	40	85	83	74	79.0	75.0	100	77.0	73.0
Grader	40 40	85	na	0	79.0	75.0	100	77.0	73.0
Grapple (on Backhoe)	40	85	87	1	79.0	75.0	100	81.0	77.0
Horizontal Boring Hydr. Jac		80	82	6	74.0	68.0	100	76.0	70.0
Hydra Break Ram	10	90	na	0	84.0	74.0	100		
Impact Pile Driver	20	95	101	11	89.0	82.0	100	95.0	88.0
Jackhammer	20	85	89	133	79.0	72.0	100	83.0	76.0
Man Lift	20	85	75	23	79.0	72.0	100	69.0	62.0
Mounted Impact Hammer	20	90	90	212	84.0	77.0	100	84.0	77.0
Pavement Scarafier	20	85	90	2	79.0	72.0	100	84.0	77.0
Paver	50	85	77	9	79.0	76.0	100	71.0	68.0
Pickup Truck	40	55	75	1	49.0	45.0	100	69.0	65.0
Pneumatic Tools Pumps	50 50	85 77	85 81	90 17	79.0 71.0	76.0 68.0	100 100	79.0 75.0	76.0 72.0
Refrigerator Unit	100	82	73	3	76.0	76.0	100	67.0	67.0
Rivit Buster/chipping gun	20	85	79	19	79.0	72.0	100	73.0	66.0
Rock Drill	20	85	81	3	79.0	72.0	100	75.0	68.0
Roller	20	85	80	16	79.0	72.0	100	74.0	67.0
Sand Blasting (Single Nozzl	20	85	96	9	79.0	72.0	100	90.0	83.0
Scraper	40	85	84	12	79.0	75.0	100	78.0	74.0
Shears (on backhoe)	40	85	96	5	79.0	75.0	100	90.0	86.0
Slurry Plant	100	78	78	1	72.0	72.0	100	72.0	72.0
Slurry Trenching Machine	50	82	80	75	76.0	73.0	100	74.0	71.0
Soil Mix Drill Rig	50	80	na	0	74.0	71.0	100		
Tractor	40	84	na	0	78.0	74.0	100	70.0	75.0
Vacuum Excavator (Vac-tru		85	85	149	79.0	75.0	100	79.0	75.0
Vacuum Street Sweeper Ventilation Fan	10 100	80 85	82 79	19 13	74.0 79.0	64.0 79.0	100 100	76.0 73.0	66.0 73.0
Vibrating Hopper	50	85	87	13	79.0	75.0	100	81.0	73.0
Vibratory Concrete Mixer	20	80	80	1	74.0	67.0	100	74.0	67.0
Vibratory Pile Driver	20	95	101	44	89.0	82.0	100	95.0	88.0
Warning Horn	5	85	83	12	79.0	66.0	100	77.0	64.0
Welder / Torch	40	73	74	5	67.0	63.0	100	68.0	64.0

Source:

FHWA Roadway Construction Noise Model, January 2006. Table 9.1 U.S. Department of Transportation CA/T Construction Spec. 721.560

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

Table A. Propagation of vibration decibels (VdB) with distance

Noise Source/ID	Reference Noise Level				
	vibration level	distance			
	(VdB)	@	(ft)		
Impact pile driver	104	@	25		

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

Table B. Propagation of peak particle velocity (PPV) with distance

Noise Source/ID	Reference Noise Level		
	vibration level	distance	
	(PPV)	@	(ft)
Impact pile driver	0.644	@	25

STEP 3A: Select the distance to the receiver.

Attenuated Noise Level at Receptor				
vibration level		distance		
(VdB)	@	(ft)		
79.8	@	160		

STEP 3B: Select the distance to the receiver.

Attenuated Noise Level at Receptor					
vibration level		distance			
(PPV)	@	(ft)			
0.197	0	55			

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 12-11 of FTA 2006. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf>. Accessed: September 24, 2010.

<u>Notes</u>

A "typical impat driver PPV reference value of 0.644 in/sec and 104 Vdb were used (FTA 2006). Based on a discussion with Shoreline General Engineering, Impact drivers and drop hammers of up to 1200 ft-lb are typically used to drive piles in Lake Tahoe (Personal communication, phone call between Dimitri Antoniou of Ascent Encvironmental on July 13, 2017). This size pile driver is substantially smaller than the pile drivers associated with the higher range of reference PPV/VdB levels in the FTA 2006 reference (in the order of 100,000 ft-lb drivers) and therefore the lower range of reference levels was uses, which may also be conservatively high.