

Prepared for:

JMA Ventures LLC 11025 Pioneer Trail, Suite 101-B Truckee, CA 96161

Prepared by:

1885 S. Arlington Avenue, Suite 111 Reno, NV 89509 (775) 329-4955

Submitted to:

Placer County Community Development Resource Agency Engineering and Surveying Department

July 2011

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.	Project Description	1
1.:	2 Compliance with Regulations and Adopted Plans	3
2.0	HYDROLOGIC AND HYDRAULIC DESIGN CRITERIA	4
2.	Placer County Design Criteria	4
2.:	Precipitation and Snowmelt	4
2.	B Infiltration	4
3.0	RUNOFF PEAK FLOW	5
3.	Runoff Peak Flow Analysis	5
3.:	Peak Flow Analysis	6
3.	Infiltration Volume Analysis	7
3.	Treatment & Infiltration Area Descriptions	8
4.0	CONCLUSIONS	9
5.0	REFERENCES	10

APPENDICES

APPENDIX A - SWMM SUMMARY TABLE

APPENDIX B - SWMM TABLES

APPENDIX C - FIGURES

- FIGURE 1 VICINITY MAP
- FIGURE 2 EXISTING CONDITIONS WATERSHED AREAS
- FIGURE 3 PROPOSED DEVELOPMENT WATERSHED AREAS

APPENDIX D - ELLIS CREEK CHANNEL ANALYSIS

- FIGURE 1 ELLIS CREEK CHANNEL PLAN & PROFILE
- FIGURE 2 SOUTH BASE STREAM DAYLIGHTING CROSS SECTIONS
- FIGURE 3 SOUTH BASE ELLIS CREEK AREA MAPPING

1.0 INTRODUCTION

This Preliminary Drainage report for the Homewood Mountain Resort in Homewood, Placer County, California was prepared by Nichols Consulting Engineers (NCE) at the request of Placer County Community Development/Resources Agency to evaluate existing and proposed stormwater runoff flows within the developed project area. The criteria set forth in the Placer County Stormwater Management Manual (SWMM) constitute the basis for this drainage report.

1.1 Project Description

1.1.1 Existing Site Context/Conditions:

Existing on-site Land Use(s): Recreation with accessory uses, and seasonal uses. The property is exclusively used for a ski operation along with its accessory food & beverage and rental/retail uses. Seasonal uses include wedding receptions, the Lake Tahoe Music Festival's "Summer Concert Series", and other community events.

Adjacent/Surrounding Land Uses: Predominantly Residential, followed by Commercial/Tourist. Both of these land use designations typically flank the SR89 corridor.

Current Site Details: Total existing coverage on the entire property is +/- 1.8 million sq ft, whereas the base allowable coverage is just over 4 million sq ft. There are no existing Tourist Accommodation Units (TAUs), Residential Units (RUs), or any Commercial Floor Area (CFA) on the property. Parking lots are predominantly paved, with the exception of the Gravel "overflow" Lot at the North base. It is important to note that both the existing North Base and South Base areas are dominated by surface parking.

Natural Features: Include, but aren't limited to Watersheds (Homewood Mountain contains all or a portion of 3 watersheds); Alpine Lakes – such as Quail Lake and more than half of Lake Louise; creeks and associated tributaries – such as Madden, Quail, and Ellis; Mixed-Conifer type forests, all of which are on mountainous terrain ranging from a base elevation of +/-6230 ft to a top elevation of roughly 7800 feet.

1.1.2 Proposed Site Context/Conditions:

North Base: Approximately 56 Residential Condominiums distributed among 4 smaller residential buildings, up to 20 of which are planned to be fractional ownership. The main hotel lodge includes approximately 30 Penthouse Condominium Units (Upper Floors of Hotel), up to 75 Traditional Hotel Rooms, and approximately 40 two-bedroom for sale Condo-Hotel Units. The North Base also includes a request for up to 25,000 sq ft of Commercial Floor Area and up to 13 workforce housing apartments attached to the east and north side of the day skier parking structure.

South Base: Up to 50 Residential Condominiums in the main hotel building plus 25 dual unit residential buildings are planned for the South Base area. The existing full vehicle shop/maintenance facility at the South Base will be eliminated with servicing of rubber-tire vehicles moved to an off-site location. Snow based equipment maintenance is planned at a new mid-mountain facility. The proposed plan relocates all existing day-skier access to the North Base area helping to further reinforce the sense of a neighborhood residential area. The existing culvert for the Homewood Creek is planned to be removed to allow the stream to be day-lighted and bridged.

Between Base Areas (above Sacramento Avenue): 16 townhomes on the Planned Development lot accessed via Tahoe Ski Bowl Way from the South Base.

Mid-Mountain: The mid-mountain will include a new 15,000+/- sq ft day lodge with a gondola terminal, food & beverage facility, outdoor dining, small sundry outlet, and an outdoor swimming facility for use during the summer months. The new mid-mountain lodge replaces the white tent structure and the existing concrete foundation located near the mid-mountain. The snow based vehicle shop/maintenance facility is proposed to be rebuilt in the mid-mountain area behind the proposed mid-mountain lodge.

Parking at Base Areas: Parking spaces provided at North Base include day skier parking in an underground 2 level parking structure, roughly 50 limited surface parking spaces at the retail and day skier drop-off area, and approximately 450 underground parking spaces directly below the building footprint of the hotel/lodge structure. The South Base will include approximately 150 parking spaces directly below the residential building footprint. This takes advantage of the excavation required for the building foundations and allows for more pervious landscape surface around the buildings (in lieu of surface parking).

1.2 Compliance with Regulations and Adopted Plans

This preliminary drainage report was prepared to conform with the Placer County Stormwater Management Manual (SWMM) and the requirements set forth by the Tahoe Regional Planning Agency (TRPA). The proposed drainage facilities and improvements for this project will be designed to meet compliance with the local, state, and regional regulations and adopted plans. The preliminary drainage report shows that proposed conditions mitigated cumulative stormwater flows will be less than existing conditions watershed flows for the 7 analyzed sub-watershed areas.

Construction related detention basins for on-site runoff will be designed as part of the construction SWPPP document.

2.0 Hydrologic and Hydraulic Design Criteria

2.1 Placer County Design Criteria

The storm drainage collection, conveyance and treatment facilities for the proposed project will be designed according to the Placer County Storm Water Management Manual (SWMM), dated September 1, 1990. All existing and proposed watersheds were analyzed using the Small Watershed Peak Flow Worksheet as shown in the included SWMM tables. According to the SWMM, the 10-year event is the minimum design storm for sizing all drainage facilities and all new development shall be planned and designed so that no damages occur to structures or improvements and to prevent loss of life during the 100-year event.

2.2 Precipitation and Snowmelt

Average annual precipitation ranges from 40 to 45 inches per year at the project site elevation. The majority of this precipitation occurs between November and May in the form of snow, which is included in the annual precipitation quantity as equivalent water content.

Though snow predominates the precipitation regime, treatment facilities will be designed using rainfall models.

2.3 Infiltration

Infiltration rates are dependant on soil type and vegetation. For the purpose of this drainage report, infiltration rates between 0.15 to 0.51 inches per hour were selected for each watershed by calculating the percentage of cover type for each soil group and averaging the infiltration rate accordingly. Cover types vary between good cover of woodland consisting of coniferous and broadleaf trees with a canopy density of at least 50% to paved streets and roads with open ditches. Soils of the soil group A have "low runoff potential with high infiltration

rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands and gravel." Soils of the soil group B have "moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission" (SWMM, 1990).

3.0 RUNOFF PEAK FLOW

3.1 Runoff Peak Flow Analysis

The runoff flow analysis was conducted according to the computation of peak flows from small watershed outlined in the SWMM. This method allows an evaluation of the peak flow from a small watershed without extensive computation. It may be used to estimate the peak runoff from basins of up to 200 acres, in areas in which no significant ponding occurs.

The method is based on a relationship between the characteristic watershed response time and peak flow per unit area from precipitation patterns typical for the region. The peak flow is a function of the area, unit peak flow, infiltration rate, and impervious surface area and was calculated using the spreadsheet calculations included in this report.

The project area is located at elevations between 6,230 feet and 7,600 feet above sea level (ASL). Snow covered areas are assumed impervious since the ground beneath is likely to be saturated and could also be frozen. The portion of the watershed covered with snow depends on elevation and location relative to the Sierra Nevada crest according to the SWMM. Based on Table 5-4 of the SWMM, 90 percent impervious was selected for the winter peak flow calculations. The summer peak flows were calculated using the actual impervious coverage areas in each watershed for the existing and proposed conditions.

The peak flows for the post-project conditions were developed based on the requirements of the SWWM manual.

3.2 Peak Flow Analysis

The peak flow analysis was conducted by determining the runoff from the proposed layout of the development and drainage facilities. The following table summarizes the calculated peak flows for each watershed area for the existing and proposed development conditions during the summertime.

Summer - Peak Flow Rates Existing Conditions (10-, and 100-year)

WSA	Runoff Area (acres)	10-Year (cfs)	100-Year (cfs)
WSA 1	28.3	20.35	41.26
WSA 2	42.4	27.79	58.31
WSA 3	10.0	5.15	11.07
WSA 4	67.4	21.81	65.61
WSA 5	5.4	4.29	8.61
WSA 6	2.2	2.65	5.10
WSA 7	145.7	97.57	199. <u>55</u>
Totals:	301.4	179.61	389.51

Summer - Peak Flow Rates Proposed Conditions (10-, and 100-year)

WSA	Runoff Area (acres)	10-Year (cfs)	100-Year (cfs)
WSA 1	28.3	18.81	36.96
WSA 2	42.4	23.90	49.02
WSA 3	10.0	5.58	11.12
WSA 4	67.4	21.25	65.34
WSA 5	5.4	4.32	7.47
WSA 6	2.2	2.66	5.00
WSA 7	145.7	97.93	199.91
Totals:	301.4	174.45	374.82

Winter - Peak Flow Rates Existing Conditions (10-, and 100-year)

WSA	Runoff Area (acres)	10-Year (cfs)	100-Year (cfs)
WSA 1	28.3	25.12	46.03
WSA 2	42.4	37.38	67.90
WSA 3	10.0	8.72	14.65
WSA 4	67.4	56.45	100.25
WSA 5	5.4	5.79	10.13

Placer County, California

WSA 6	2.2	3.28	5.73
WSA 7	145.7	140.82	242.81
Totals:	301.4	277.56	487.50

Winter - Peak Flow Rates Proposed Conditions (10-, and 100-year)

WSA	Runoff Area (acres)	10-Year (cfs)	100-Year (cfs)
WSA 1	28.3	21.87	40.02
WSA 2	42.4	32.65	57.77
WSA 3	10.0	7.91	13.08
WSA 4	67.4	54.34	98.43
WSA 5	5.4	5.2	8.34
WSA 6	2.2	3.18	5.52
WSA 7	145.7	140.86	242.84
Totals:	301.4	266.01	466.00

3.3 Infiltration Volume Analysis

Table 1 lists the required runoff volume to be stored or infiltrated on site. The proposed Low Impact Development (LID) and infiltration components are designed to store and infiltrate (at a minimum) the runoff generated by the 20-year, 1-hour event calculated at 1 inch over the impervious developed surface area.

Table 1: Impervious Surface Areas and Runoff Volumes

	Underground Infiltration Galleries								
North-1	North-2	North-3	North-4	South-1	South-2				
SW	SW	SW	SW	SW	SW				
24,635	19,890	145,378	174,587	89,307	44,527				
2,053	1,658	12,115	14,549	7,442	3,711				
2,681	2,167	15,904	23,441	9,650	8,040				
6238	6237.5	6238	6240.5	6269	6272				
6234	6233	6233.5	6236	6264.5	6267.5				
6232	6231	6231.5	6234	6256.5	6263				
2	2	2	2	8	4.5				
MW3N, 6230.7	GP2, 6230.7	GP5, 6230.76	GP8, 6233.58	MW3S, 6256.5	GP4, <66262.93				
48x36x3	63x22x3	120x78x3	124x121x3	90x80x2.5	100x52x3				
	24,635 2,053 2,681 6238 6234 6232 2 MW3N, 6230.7 48x36x3	24,635 19,890 2,053 1,658 2,681 2,167 6238 6237.5 6234 6233 6232 6231 2 2 MW3N, 6230.7 GP2, 6230.7	24,635 19,890 145,378 2,053 1,658 12,115 2,681 2,167 15,904 6238 6237.5 6238 6234 6233 6233.5 6232 6231 6231.5 2 2 2 MW3N, 6230.7 GP2, 6230.7 GP5, 6230.76 48x36x3 63x22x3 120x78x3	24,635 19,890 145,378 174,587 2,053 1,658 12,115 14,549 2,681 2,167 15,904 23,441 6238 6237.5 6238 6240.5 6234 6233 6233.5 6236 6232 6231 6231.5 6234 2 2 2 2 MW3N, 6230.7 GP2, 6230.7 GP5, 6230.76 GP8, 6233.58 48x36x3 63x22x3 120x78x3 124x121x3	24,635 19,890 145,378 174,587 89,307 2,053 1,658 12,115 14,549 7,442 2,681 2,167 15,904 23,441 9,650 6238 6237.5 6238 6240.5 6269 6234 6233 6233.5 6236 6264.5 6232 6231 6231.5 6234 6256.5 2 2 2 2 8 MW3N, 6230.7 GP2, 6230.7 GP5, 6230.76 GP8, 6233.58 MW3S, 6256.5 48x36x3 63x22x3 120x78x3 124x121x3 90x80x2.5				

<u>legend:</u> Note

SW= stormwater

GW= groundwater Seasonal high groundwater levels are projected to rise 0.7 feet under stormwater galleries &

MW= monitoring well 0.8 feet under groundwater reinjection galleries due to infiltration.

GP= monitoring well

3.4 Treatment & Infiltration Area Descriptions

In order to meet TRPA requirements for treatment of storm water runoff from impervious surfaces, a series of bio swales, storm drain collection and sub-surface infiltration devices are proposed to be constructed with the development.

The intent of the proposed design is to collect all runoff from impervious areas such as the building roofs, walkways, roadways, and parking areas and convey it to infiltration trenches sized to meet TRPA requirements.

Placer County, California

4.0 CONCLUSIONS

Design for the proposed Homewood Mountain Resort project incorporates current requirements by Placer County for storm water collection and conveyance as well as requirements by the TRPA. The SWMM post development calculations show a cumulative reduction in peak flow from existing to proposed conditions for the 10 and 100 year storm events. Therefore the proposed storm drain facilities are designed to capture, convey and infiltrate (at a minimum) runoff generated by the 20-year, 1-hour event at 1 inch over the impervious surface area per TRPA requirements.

The proposed storm drain collection, conveyance and infiltration facilities will comply with the Placer County Storm Water Management Manual (SWMM), dated September 1, 1990.

Placer County, California

5.0 **REFERENCES**

Placer County, Flood Control and Water Conservation District; Stormwater Management Manual (SWMM); September 1990.

United States Forest Service; Soil Survey Tahoe National Forest Area, California, January 2002.

DISTRIBUTION

JMA VENTURES LLC

HOMEWOOD MOUNTAIN RESORT

July 29, 2011	
Copies3	Rebecca Taber, Placer County
Electronic file1_	Melanie Green, HBA
Electronic file1_	David Tirman, JMA
Copies <u>1</u>	NCE Project File 514.02.14
OLIALIEN CONTROL DEL	MEM JED

QUALITY CONTROL REVIEWER

Paul Pettersen Principal

Appendix A

SWMM Summary Table

SWMM Summary Sheet Summer Impervious Calculations Homewood Mountain Resort

Lahontan 20-Yr, 1-Hr Storm Event Calculations

Total Watershed Area (sf)	Impervious Area (sf)	Infiltration Requirement (in)	Required Volume (cf)	Proposed Infiltration Volume (cf)
13,128,756	659,130	0.9	54,324	60,059

Placer County SWMM Model Calculations

		10-YEAR PEAK FLOW			100-YEAR PEAK FLOW		
	Existing Conditions	Proposed Conditions	Exist/Proposed Difference	Existing Conditions	Proposed Conditions	Exist/Proposed Difference*	
WATERSHED AREAS	[cfs]	[cfs]	[cfs]	[cfs]	[cfs]	[cfs]	
WS-1	20.35	18.81	-1.54	41.26	36.96	-4.30	
WS-2	27.79	23.90	-3.89	58.31	49.02	-9.29	
WS-3	5.15	5.58	0.43	11.07	11.12	0.05	
WS-4	21.81	21.25	-0.57	65.61	65.34	-0.28	
WS-5	4.29	4.32	0.03	8.61	7.47	-1.15	
WS-6	2.65	2.66	0.01	5.10	5.00	-0.10	
WS-7	97.57	97.93	0.37	199.55	199.91	0.37	
TOTAL	179.61	174.44	-5.16	389.52	374.82	-14.70	

^{*} Negative numbers shown in the tables represent a reduction in flow from existing to proposed conditions.

SWMM Summary Sheet Winter Impervious Calculations Homewood Mountain Resort

Lahontan 20-Yr, 1-Hr Storm Event Calculations

Total Watershed Area (sf)	Impervious Area (sf)	Infiltration Requirement (in)	Required Volume (cf)	Proposed Infiltration Volume (cf)
13,128,756	659,130	0.9	54,324	60,059

Placer County SWMM Model Calculations

	10-YEAR PEAK FLOW			100-YEAR PEAK FLOW		
	Existing Conditions	Proposed Conditions	Exist/Proposed Difference	Existing Conditions	Proposed Conditions	Exist/Proposed Difference*
WATERSHED AREAS	[cfs]	[cfs]	[cfs]	[cfs]	[cfs]	[cfs]
WS-1	25.12	21.87	-3.25	46.03	40.02	-6.01
WS-2	37.38	32.65	-4.73	67.90	57.77	-10.13
WS-3	8.72	7.91	-0.81	14.65	13.08	-1.56
WS-4	56.45	54.34	-2.12	100.25	98.43	-1.82
WS-5	5.79	5.20	-0.59	10.13	8.34	-1.78
WS-6	3.28	3.18	-0.10	5.73	5.52	-0.21
WS-7	140.82	140.86	0.03	242.81	242.84	0.03
TOTAL	277.57	266.00	-11.57	487.49	466.01	-21.48

^{*} Negative numbers shown in the tables represent a reduction in flow from existing to proposed conditions.

<u>December 2010</u> Placer County, California

Appendix B

SWMM Tables

		D 4 0040
Preliminary Drainage Report Homewood Mountain Resort		<u>December 2010</u> Placer County, California
	Summer	

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

					PARKET STATE			
Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	erg						
Project	Homewood	l Mountain Res	ort - Summer	Calculations				
Watershed	Existing Co	nditions WS-1						
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	516	0.23	0.4			13.46		
Collector 1	1942	0.38	0.1	20.7	15	3,36		
Collector 2	369	0.18	0.05	25.3	15	0.48		
Collector 3	221	0.02	0.05	28.3	1	0.37		
				Total Response	Time (minutes)	17.67		
				Unit Peak	Flow (cfs/acre)	0.91		
			Infiltra	ation Rate (in/hr)	0.17			
		-	Infiltration F	actor (cfs/acre)	0.21			
			Per	cent Impervious	8.5			
CONTRACTOR	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor					20.35		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	l Mountain Res	ort - Summer	Calculations				
Watershed	Existing Co	onditions WS-2						
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.27	0.4			12.63		
Collector 1	1853	0.33	0.1	28.2	15	3.12		
Collector 2	824	0.07	0.1	37.3	3	1.56		
Collector 3	305	0.01	0.05	42.4	1	0.56		
Collector 4								
				Total Response	Time (minutes)	17.88		
				Unit Peak	Flow (cfs/acre)	0.91		
			Infiltra	ation Rate (in/hr)	0.23			
			Infiltration	Factor (cfs/acre)	0.3			
			Per	cent Impervious	10			
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	nditions WS-3							
Area (acres)	10.0	Elevation (ft)	6593	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.36			
Collector 1	1715	0.30	0.1	8.6	15	4.05			
Collector 2	280	0.12	0.02	10.0	3	0.18			
Collector 3									
				Total Response	Time (minutes)	18.60			
				Unit Peak	Flow (cfs/acre)	0.91			
			Infiltra	ation Rate (in/hr)	0.34				
			Infiltration I	actor (cfs/acre)	0.41				
			Per	cent Impervious	3.8				
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	onditions WS-4							
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		10			
	Length (ft) Slope (ft/ft) Manning's n Contributing Side Slope value Area (acres) (ft/ft)					Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	2448	0.26	0.1	57.5	15	3.81			
Collector 2	1456	0.04	0.02	67.4	3	0.92			
Collector 3									
				Total Response ⁻	Time (minutes)	18.99			
				Unit Peak	Flow (cfs/acre)	0.90			
			Infiltra	ıtion Rate (in/hr)	0.51				
			Infiltration F	actor (cfs/acre)	0.62				
			Per	cent Impervious	7.3				
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	nditions WS-5							
Area (acres)	5.4	5.4 Elevation (ft) 7408 Return Period (years) 10				10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.19	0.4			14.04			
Collector 1	616	0.23	0.1	5.4	15	1.81			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	15.85			
				Unit Peak	Flow (cfs/acre)	1.10			
			Infiltra	ation Rate (in/hr)	0.26				
			Infiltration I	actor (cfs/acre)	0.31				
			Per	cent Impervious	1.0				
The commence of the commence o	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	nditions WS-6							
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	100	0.30	0.4			4.66			
Collector 1	401	0.07	0.1	2.2	15	2.32			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	6.98			
				Unit Peak	Flow (cfs/acre)	1.50			
			Infiltra	tion Rate (in/hr)	0.26				
	Infiltration Factor (cfs/acre) 0.31								
			Per	cent Impervious	0.0				
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor						2.65			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011								
Engineer	Jack Norbe	Jack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	nditions WS-7							
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	4308	0.27	0.1	145.7	15	5.24			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	19.50			
				Unit Peak	Flow (cfs/acre)	1.00			
			Infiltra	ation Rate (in/hr)	0.28				
			Infiltration I	actor (cfs/acre)	0.33				
			Per	cent Impervious	1.1				
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						97.57			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

Date	7/29/2011	7/29/2011							
Engineer	Jack Norbe	Jack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Proposed (Conditions WS-	1						
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		10			
8	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	516	0.23	0.4			13.46			
Collector 1	1942	0.38	0.1	20.7	15	3.36			
Collector 2	1051	0.06	0.025	24.5	1	0.74			
Collector 3									
				Total Response	Time (minutes)	17.56			
				Unit Peak	Flow (cfs/acre)	0.91			
			Infiltra	ation Rate (in/hr)	0.15				
			Infiltration I	Factor (cfs/acre)	0.18				
			Per	cent Impervious	22.3				
Watershed Pea Infiltration Factor): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	18.81			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

					Welling T.				
Date	7/29/2011	7/29/2011							
Engineer	Jack Norbe	Jack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	ProposedC	onditions WS-2	2						
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.27	0.4			12.63			
Collector 1	1853	0.33	0.1	28.2	15	3.12			
Collector 2	1344	0.05	0.04	33.7	15	2.30			
Collector 3	707	0.01	0.025	38.1	1	1.09			
				Total Response	Time (minutes)	19.15			
				Unit Peak	Flow (cfs/acre)	0.89			
			Infiltra	ation Rate (in/hr)	0.26				
			Infiltration F	actor (cfs/acre)	0.32				
			Per	cent Impervious	18.2				
No. A SECTION AND SECTION OF	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	//29/2011							
Engineer	Jack Norbe	Jack Norberg							
Project	Homewood	l Mountain Res	ort - Summer	Calculations					
Watershed	Proposed (Conditions WS-	3						
Area (acres)	10.0	10.0 Elevation (ft) 6593 Return Period (years) 10							
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.36			
Collector 1	1647	0.30	0.1	8.6	15	3.86			
Collector 2	581	0.07	0.11	9.2	1	1.52			
Collector 3									
				Total Response	Time (minutes)	19.74			
				Unit Peak	Flow (cfs/acre)	0.90			
			Infiltra	ation Rate (in/hr)	0.27				
			Infiltration I	Factor (cfs/acre)	0.33				
			Per	cent Impervious	11.5				
The Military age of the contract the contract of the contract of	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	Homewood Mountain Resort - Summer Calculations						
Watershed	Proposed (Conditions WS-	4					
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	2448	0.26	0.1	57.5	15	3.81		
Collector 2	1456	0.04	0.02	64.8	3	0.93		
Collector 3								
				Total Response	Time (minutes)	19.00		
				Unit Peak	Flow (cfs/acre)	0.90		
			Infiltra	ation Rate (in/hr)	0.51			
			Infiltration I	Factor (cfs/acre)	0.62			
			Per	cent Impervious	7.6			
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

						n desired at the second second		
Date	Date 7/29/2011							
Engineer	Jack Norbe		ell control					
Project	Homewood	Mountain Res	ort - Summer	Calculations				
Watershed	Proposed (Conditions WS-	5					
Area (acres)	res) 5.4 Elevation (ft) 7408 Return Period (years)					10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.19	0.4			14.04		
Collector 1	631	0.22	0.1	4.8	3	1.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	15.36		
				Unit Peak	Flow (cfs/acre)	1.10		
	MANY OF WAR							
			Per	cent Impervious	20.4			
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						4.32		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

	7/29/2011							
	Jack Norbe							
Project	Homewood	Homewood Mountain Resort - Summer Calculations						
Watershed	Proposed (Proposed Conditions WS-6						
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	180	0.32	0.4			6.52		
Collector 1	376	0.30	0.22	2.2	3	1.54		
Collector 2					是我们的			
Collector 3								
				Total Response	Time (minutes)	8.06		
				Unit Peak	Flow (cfs/acre)	1.45		
Percent Impervious 5.9 Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						2.66		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	l Mountain Res	ort - Summer	Calculations				
Watershed	Proposed (Conditions WS-	7					
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	4308	0.27	0.1	145.7	15	5.24		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	19.50		
				Unit Peak	Flow (cfs/acre)	1.00		
			Per	cent Impervious	1.2			
Watershed Pea Infiltration Facto	Committee of the Commit): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	97.93		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Control of the Contro		and the latest term of the contract of the latest terms and the contract of th						
Date	7/29/2011							
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	Homewood Mountain Resort - Summer Calculations						
Watershed	Existing Co	onditions WS-1						
Area (acres)	28.3 Elevation (ft) 6702 Return Period (years)				100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	516	0.23	0.4			13.46		
Collector 1	1942	0.38	0.1	20.7	15	3.36		
Collector 2	369	0.18	0.05	25.3	15	0.48		
Collector 3	221	0.02	0.05	28.3	1	0.37		
				Total Response	Time (minutes)	17.67		
				Unit Peak	Flow (cfs/acre)	1.65		
	Percent Impervious 8.5							
Watershed Pea Infiltration Factor	41.26							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	d Mountain Res	ort - Summer	Calculations				
Watershed	Existing Co	onditions WS-2						
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)	100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.27	0.4			12.63		
Collector 1	1853	0.33	0.1	28.2	15	3.12		
Collector 2	824	0.07	0.1	37.3	3	1.56		
Collector 3	305	0.01	0.05	42.4	1	0.56		
Collector 4			Control of the Control					
				Total Response	Time (minutes)	17.88		
	Unit Peak Flow (cfs/acre)							
Percent Impervious 10 Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						58.31		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	Jack Norberg						
Project	Homewood	Homewood Mountain Resort - Summer Calculations						
Watershed	Existing Co	nditions WS-3						
Area (acres)	10.0 Elevation (ft) 6593 Return Period (years)					100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.36		
Collector 1	1715	0.30	0.1	8.6	15	4.05		
Collector 2	280	0.12	0.02	10.0	3	0.18		
Collector 3								
				Total Response	Time (minutes)	18.60		
				Unit Peak	Flow (cfs/acre)	1.50		
	Infiltration Rate (in/hr) 0.34							
	Percent Impervious 3.8 Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509

(775) 329-4955

		Oman war							
Date	7/29/2011	/29/2011							
Engineer	Jack Norbe	rg							
Project	Homewood	Mountain Res	ort - Summer	Calculations					
Watershed	Existing Co	onditions WS-4							
Area (acres)	67.4	67.4 Elevation (ft) 6652 Return Period (years)							
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	2448	0.26	0.1	57.5	15	3.81			
Collector 2	1456	0.04	0.02	67.4	3	0.92			
Collector 3									
				Total Response	Time (minutes)	18.99			
				Unit Peak	Flow (cfs/acre)	1.55			
	Percent Impervious 7.3								
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	65.61			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011						
Engineer	Jack Norbe	ack Norberg						
Project	Homewood	Homewood Mountain Resort - Summer Calculations						
Watershed	Existing Co	nditions WS-5						
Area (acres)	5.4	5.4 Elevation (ft) 7408 Return Period (years) 100			100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.19	0.4			14.04		
Collector 1	616	0.23	0.1	5.4	15	1.81		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	15.85		
				Unit Peak	Flow (cfs/acre)	1.90		
			Infiltra	tion Rate (in/hr)	0.26			
	Percent Impervious 0.5							
The second of th	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor					8.61		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	Date 7/29/2011							
Engineer	Jack Norbe	ack Norberg						
Project	Project Homewood Mountain Resort - Summer Calculations							
Watershed	Existing Co	onditions WS-6						
Area (acres)	2.2	2.2 Elevation (ft) 7565 Return Period (years) 100			100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	100	0.30	0.4			4.66		
Collector 1	401	0.07	0.1	2.2	15	2.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	6.98		
				Unit Peak	Flow (cfs/acre)	2.60		
			Infiltra	ation Rate (in/hr)	0.26			
	0.31							
	Percent Impervious 0.0							
the comment of the co	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	7/29/2011						
Engineer	Jack Norbe	ack Norberg						
Project	Homewood Mountain Resort - Summer Calculations							
Watershed	Existing Co	onditions WS-7						
Area (acres)	145.7 Elevation (ft) 7465 Return Period (years) 100			100				
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	4308	0.27	0.1	145.7	15	5.24		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	19.50		
				Unit Peak	Flow (cfs/acre)	1.70		
			Infiltre	ation Rate (in/hr)	0.28			
	Infiltration Factor (cfs/acre) 0.33							
	Percent Impervious 1.1							
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						199.55		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011						
Engineer	Engineer Jack Norberg Project Homewood Mountain Resort - Summer Calculations						
Project							
Watershed	Proposed (Conditions WS-	1				
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		100	
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)	
Overland Flow	516	0.23	0.4			13.46	
Collector 1	1942	0.38	0.1	20.7	15	3.36	
Collector 2	1051	0.06	0.025	24.5	1	0.74	
Collector 3							
				Total Response	Time (minutes)	17.56	
				Unit Peak	Flow (cfs/acre)	1.65	
			Infiltra	tion Rate (in/hr)	0.15		
	Infiltration Factor (cfs/acre) 0.18						
			Per	cent Impervious	22.3		
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	36.96	

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011						
Engineer	Jack Norbe	ack Norberg						
Project	Homewood	l Mountain Res	ort - Summer	Calculations				
Watershed	ProposedC	onditions WS-2	2					
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.27	0.4			12.63		
Collector 1	1853	0.33	0.1	28.2	15	3.12		
Collector 2	1344	0.05	0.04	33.7	15	2.30		
Collector 3	707	0.01	0.025	38.1	1	1.09		
				Total Response	Time (minutes)	19.15		
				Unit Peak	Flow (cfs/acre)	1.55		
			Infiltra	ation Rate (in/hr)	0.26			
			Infiltration F	actor (cfs/acre)	0.32			
	Percent Impervious 18.2							
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor					49.02		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011						
Engineer	Jack Norbe	lack Norberg						
Project	Homewood	l Mountain Res	ort - Summer	Calculations				
Watershed	Proposed (Conditions WS-	3					
Area (acres)	10.0	Elevation (ft)	6593	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.36		
Collector 1	1647	0.30	0.1	8.6	15	3.86		
Collector 2	581	0.07	0.11	9.2	1	1.52		
Collector 3								
				Total Response	Time (minutes)	19.74		
				Unit Peak	Flow (cfs/acre)	1.50		
			Infiltra	tion Rate (in/hr)	0.27			
	Infiltration Factor (cfs/acre) 0.33							
	Percent Impervious 11.5							
Watershed Pea Infiltration Facto	enteres and an enteres and an enterest): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	11.12		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	Date 7/29/2011							
Engineer	Engineer Jack Norberg							
Project	Homewood	Mountain Res	ort - Summer	Calculations				
Watershed	Proposed (Conditions WS-	4					
Area (acres)	acres) 67.4 Elevation (ft) 6652 Return Period (years) 100					100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	2448	0.26	0.1	57.5	15	3.81		
Collector 2	1456	0.04	0.02	64.8	3	0.93		
Collector 3			12/13/14/24					
			College College	Total Response ⁻	Time (minutes)	19.00		
				Unit Peak	Flow (cfs/acre)	1.58		
			Infiltra	tion Rate (in/hr)	0.51			
	je -							
	Percent Impervious 7.6							
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x offiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	Date 7/29/2011							
Engineer	r Jack Norberg							
Project	Project Homewood Mountain Resort - Summer Calculations							
Watershed	Proposed (Conditions WS-	5					
Area (acres)	Return Period 400							
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.19	0.4			14.04		
Collector 1	631	0.22	0.1	4.8	3	1.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	15.36		
		10117		Unit Peak	Flow (cfs/acre)	1.75		
			Infiltra	ation Rate (in/hr)	0.22			
Percent Impervious 20.4								
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						7.47		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	Date 7/29/2011							
Engineer	Jack Norbe	Jack Norberg						
Project	Project Homewood Mountain Resort - Summer Calculations							
Watershed	Proposed (Conditions WS-	6					
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	180	0.32	0.4			6.52		
Collector 1	376	0.30	0.22	2.2	3	1.54		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	8.06		
				Unit Peak	Flow (cfs/acre)	2.50		
			Infiltra	ation Rate (in/hr)	0.23			
	Infiltration Factor (cfs/acre) 0.28							
	Percent Impervious 5.9							
Watershed Pea Infiltration Factor	Control of the second s): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	5.00		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

		- Cilian Irai	oromou r o	unt 1 1011 11 011	torroot	. CE LIL		
Date	Date 7/29/2011							
Engineer	Engineer Jack Norberg							
Project	Project Homewood Mountain Resort - Summer Calculations							
Watershed	Watershed Proposed Conditions WS-7							
Area (acres)	res) 145.7 Elevation (ft) 7465 Return Period (years) 100					100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	4308	0.27	0.1	145.7	15	5.24		
Collector 2								
Collector 3								
	1 - 1			Total Response	Time (minutes)	19.50		
				Unit Peak	Flow (cfs/acre)	1.70		
			Infiltra	tion Rate (in/hr)	0.28			
	Infiltration Factor (cfs/acre) 0.33							
	Percent Impervious 1.2							
Watershed Pea Infiltration Facto	200 1 100): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	199.91		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

F	<u>Preliminar</u>	/ Drainage	Report

Homewood Mountain Resort

<u>December 2010</u> Placer County, California

Winter

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011					
Engineer	Jack Norbe	ack Norberg					
Project	Homewood	Mountain Res	ort - Winter C	alculations			
Watershed	Existing Co	onditions WS-1					
Area (acres)	28.3	28.3 Elevation (ft) 6702 Return Period (years) 10				10	
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)	
Overland Flow	516	0.23	0.4			13.46	
Collector 1	1942	0.38	0.1	20.7	15	3.36	
Collector 2	369	0.18	0.05	25.3	15	0.48	
Collector 3	221	0.02	0.05	28.3	1	0.37	
	V 110			Total Response	Time (minutes)	17.67	
				Unit Peak	Flow (cfs/acre)	0.91	
			Infiltra	ation Rate (in/hr)	0.17		
	Infiltration Factor (cfs/acre) 0.21						
	Percent Impervious 90						
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor						

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011								
Engineer	Jack Norbe	erg							
Project	Homewood	Homewood Mountain Resort - Winter Calculations							
Watershed	Existing Co	onditions WS-2							
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.27	0.4			12.63			
Collector 1	1853	0.33	0.1	28.2	15	3.12			
Collector 2	824	0.07	0.1	37.3	3	1.56			
Collector 3	305	0.01	0.05	42.4	1	0.56			
Collector 4									
				Total Response	Time (minutes)	17.88			
				Unit Peak	Flow (cfs/acre)	0.91			
			Infiltra	ition Rate (in/hr)	0.23				
			Infiltration F	actor (cfs/acre)	0				
	Percent Impervious 90								
Watershed Pea Infiltration Facto	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Winter C	alculations					
Watershed	Existing Co	xisting Conditions WS-3							
Area (acres)	10.0	Elevation (ft)	6593	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.36			
Collector 1	1715	0.30	0.1	8.6	15	4.05			
Collector 2	280	0.12	0.02	10.0	3	0.18			
Collector 3									
				Total Response	Time (minutes)	18.60			
				Unit Peak	Flow (cfs/acre)	0.91			
			Infiltra	tion Rate (in/hr)	0.34				
		*	Infiltration F	actor (cfs/acre)	0.41				
			Per	cent Impervious	90				
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	8.72			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	Mountain Res	ort - Winter C	alculations					
Watershed	Existing Co	ixisting Conditions WS-4							
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	2448	0.26	0.1	57.5	15	3.81			
Collector 2	1456	0.04	0.02	67.4	3	0.92			
Collector 3									
				Total Response	Time (minutes)	18.99			
				Unit Peak	Flow (cfs/acre)	0.90			
			Infiltra	tion Rate (in/hr)	0.51				
			Infiltration F	actor (cfs/acre)	0.62				
			Per	cent Impervious	90	-			
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervio	ous) x Area x	56.45			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

					STATE OF THE PARTY				
Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	Homewood Mountain Resort - Winter Calculations							
Watershed	Existing Co	onditions WS-5							
Area (acres)	5.4	Elevation (ft)	7408	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.19	0.4			14.04			
Collector 1	616	0.23	0.1	5.4	15	1.81			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	15.85			
				Unit Peak	Flow (cfs/acre)	1.10			
			Infiltra	ation Rate (in/hr)	0.26				
			Infiltration I	actor (cfs/acre)	0.31				
			Per	cent Impervious	90				
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

90	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Project Homewood Mountain Resort - Winter Calculations								
Watershed	Existing Co	onditions WS-6							
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	100	0.30	0.4			4.66			
Collector 1	401	0.07	0.1	2.2	15	2.32			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	6.98			
				Unit Peak	Flow (cfs/acre)	1.50			
			Infiltra	ation Rate (in/hr)	0.26				
			Infiltration I	actor (cfs/acre)	0.31				
			Per	cent Impervious	90				
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

					tomoot.			
Date	7/29/2011	29/2011						
Engineer	neer Jack Norberg							
Project	Homewood	Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	onditions WS-7						
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		10		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	4308	0.27	0.1	145.7	15	5.24		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	19.50		
				Unit Peak	Flow (cfs/acre)	1.00		
			Infiltra	ation Rate (in/hr)	0.28			
			Infiltration F	actor (cfs/acre)	0.33			
			Per	cent Impervious	90			
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	Date 7/29/2011							
Engineer	Engineer Jack Norberg							
Project	Project Homewood Mountain Resort - Winter Calculations							
Watershed	Proposed (Conditions WS-	1					
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)	10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	516	0.23	0.4			13.46		
Collector 1	1942	0.38	0.1	20.7	15	3.36		
Collector 2	1051	0.06	0.025	24.5	1	0.74		
Collector 3								
				Total Response	Time (minutes)	17.56		
				Unit Peak	Flow (cfs/acre)	0.91		
			Infiltra	tion Rate (in/hr)	0.15			
			Infiltration F	actor (cfs/acre)	0.18			
	Percent Impervious 90							
and the second s	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	9/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	omewood Mountain Resort - Winter Calculations							
Watershed	ProposedC	roposedConditions WS-2							
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)	10				
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.27	0.4			12.63			
Collector 1	1853	0.33	0.1	28.2	15	3.12			
Collector 2	1344	0.05	0.04	33.7	15	2.30			
Collector 3	707	0.01	0.025	38.1	1	1.09			
				Total Response	Time (minutes)	19.15			
				Unit Peak	Flow (cfs/acre)	0.89			
			Infiltra	tion Rate (in/hr)	0.26				
			Infiltration F	actor (cfs/acre)	0.32				
			Per	cent Impervious	90				
I I I I I I I I I I I I I I I I I I I	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	omewood Mountain Resort - Winter Calculations							
Watershed	Proposed (Conditions WS-	3						
Area (acres)	10.0	Elevation (ft)	6593	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.36			
Collector 1	1647	0.30	0.1	8.6	15	3.86			
Collector 2	581	0.07	0.11	9.2	1	1.52			
Collector 3									
				Total Response	Time (minutes)	19.74			
				Unit Peak	Flow (cfs/acre)	0.89			
			Infiltra	tion Rate (in/hr)	0.27				
			Infiltration F	actor (cfs/acre)	0.33				
			Per	cent Impervious	90	E we e			
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	/29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Winter C	alculations					
Watershed	Proposed (Conditions WS-	4						
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	2448	0.26	0.1	57.5	15	3.81			
Collector 2	1456	0.04	0.02	64.8	3	0.93			
Collector 3									
				Total Response	Time (minutes)	19.00			
				Unit Peak	Flow (cfs/acre)	0.90			
			Infiltra	tion Rate (in/hr)	0.51				
			Infiltration F	actor (cfs/acre)	0.62				
			Per	cent Impervious	90				
The state of the s	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor					54.34			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date 7/29/2011								
Engineer	Engineer Jack Norberg							
Project	Homewood	Mountain Res	ort - Winter C	alculations				
Watershed	Proposed (Conditions WS-	5					
Area (acres)	5.4	4 Elevation (ft) 7408 Return Period (years) 10			10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.19	0.4			14.04		
Collector 1	631	0.22	0.1	4.8	3	1.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	15.36		
				Unit Peak	Flow (cfs/acre)	1.10		
			Infiltra	ation Rate (in/hr)	0.22			
			Infiltration I	actor (cfs/acre)	0.26			
			Per	cent Impervious	90			
Watershed Pea Infiltration Facto	636): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	5.20		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	lomewood Mountain Resort - Winter Calculations							
Watershed	Proposed (Conditions WS-	6						
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	180	0.32	0.4			6.52			
Collector 1	376	0.30	0.22	2.2	3	1.54			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	8.06			
		10 T 3c		Unit Peak	Flow (cfs/acre)	1.45			
			Infiltra	ation Rate (in/hr)	0.23				
			Infiltration I	actor (cfs/acre)	0.28				
			Per	cent Impervious	90				
The second secon	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	THE STATE OF THE S							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	d Mountain Res	ort - Winter C	alculations					
Watershed	Proposed (Conditions WS-	7						
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		10			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	4308	0.27	0.1	145.7	15	5.24			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	19.50			
				Unit Peak	Flow (cfs/acre)	1.00			
			Infiltra	ation Rate (in/hr)	0.28				
			Infiltration F	Factor (cfs/acre)	0.33				
			Per	cent Impervious	90				
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011						
Engineer	Jack Norbe	ack Norberg						
Project	Homewood	Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	xisting Conditions WS-1						
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	516	0.23	0.4			13.46		
Collector 1	1942	0.38	0.1	20.7	15	3.36		
Collector 2	369	0.18	0.05	25.3	15	0.48		
Collector 3	221	0.02	0.05	28.3	1	0.37		
			70 Halles	Total Response	Time (minutes)	17.67		
				Unit Peak	Flow (cfs/acre)	1.65		
			Infiltra	ition Rate (in/hr)	0.17			
			Infiltration F	actor (cfs/acre)	0.21			
	Percent Impervious 90							
and the same of th	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011								
Engineer	Jack Norbe	erg							
Project	Homewood	Homewood Mountain Resort - Winter Calculations							
Watershed	Existing Co	onditions WS-2							
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.27	0.4			12.63			
Collector 1	1853	0.33	0.1	28.2	15	3.12			
Collector 2	824	0.07	0.1	37.3	3	1.56			
Collector 3	305	0.01	0.05	42.4	1	0.56			
Collector 4		LETTE TO							
				Total Response	Time (minutes)	17.88			
				Unit Peak	Flow (cfs/acre)	1.63			
			Infiltra	ation Rate (in/hr)	0.23				
			Infiltration F	Factor (cfs/acre)	0				
			Per	cent Impervious	90				
Watershed Pea	200): Area x Unit	Peak Flow-(1	-Percent Impervio	ous) x Area x	67.90			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011						
Engineer	Jack Norbe	ack Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	nditions WS-3						
Area (acres)	10.0	Elevation (ft)	6593	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.36		
Collector 1	1715	0.30	0.1	8.6	15	4.05		
Collector 2	280	0.12	0.02	10.0	3	0.18		
Collector 3								
				Total Response	Time (minutes)	18.60		
				Unit Peak	Flow (cfs/acre)	1.50		
			Infiltra	tion Rate (in/hr)	0.34			
			Infiltration I	actor (cfs/acre)	0.41			
	Percent Impervious 90							
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	Percent Impervi	ous) x Area x	14.65		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	e 7/29/2011							
Engineer	er Jack Norberg							
Project	Homewood	l Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	onditions WS-4						
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	2448	0.26	0.1	57.5	15	3.81		
Collector 2	1456	0.04	0.02	67.4	3	0.92		
Collector 3								
				Total Response	Time (minutes)	18.99		
				Unit Peak	Flow (cfs/acre)	1.55		
			Infiltra	tion Rate (in/hr)	0.51			
			Infiltration I	actor (cfs/acre)	0.62			
	Percent Impervious 90							
Watershed Pea Infiltration Facto	1/3/): Area x Unit	Peak Flow-(1	Percent Impervi	ous) x Area x	100.25		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Winter C	alculations					
Watershed	Existing Co	xisting Conditions WS-5							
Area (acres)	5.4	Elevation (ft)	7408	Return Period (years)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.19	0.4			14.04			
Collector 1	616	0.23	0.1	5.4	15	1.81			
Collector 2									
Collector 3									
				Total Response	Time (minutes)	15.85			
				Unit Peak	Flow (cfs/acre)	1.90			
			Infiltra	ation Rate (in/hr)	0.26				
			Infiltration I	actor (cfs/acre)	0.31				
	Percent Impervious 90								
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	9/2011						
Engineer	Jack Norbe	ick Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	onditions WS-6						
Area (acres)	2.2	Elevation (ft)	7565	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	100	0.30	0.4			4.66		
Collector 1	401	0.07	0.1	2.2	15	2.32		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	6.98		
				Unit Peak	Flow (cfs/acre)	2.60		
			Infiltra	tion Rate (in/hr)	0.26			
			Infiltration I	actor (cfs/acre)	0.31			
	Percent Impervious 90							
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1	-Percent Impervi	ous) x Area x	5.73		

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011							
Engineer	Jack Norbe	ick Norberg						
Project	Homewood	l Mountain Res	ort - Winter C	alculations				
Watershed	Existing Co	nditions WS-7						
Area (acres)	145.7	Elevation (ft)	7465	Return Period (years)		100		
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)		
Overland Flow	500	0.18	0.4			14.26		
Collector 1	4308	0.27	0.1	145.7	15	5.24		
Collector 2								
Collector 3								
				Total Response	Time (minutes)	19.50		
				Unit Peak	Flow (cfs/acre)	1.70		
			Infiltra	ation Rate (in/hr)	0.28			
			Infiltration F	actor (cfs/acre)	0.33			
	Percent Impervious 90							
The second secon	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor							

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	omewood Mountain Resort - Winter Calculations							
Watershed	Proposed (roposed Conditions WS-1							
Area (acres)	28.3	Elevation (ft)	6702	Return Period (years)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	516	0.23	0.4			13.46			
Collector 1	1942	0.38	0.1	20.7	15	3.36			
Collector 2	1051	0.06	0.025	24.5	1	0.74			
Collector 3									
				Total Response	Time (minutes)	17.56			
		19		Unit Peak	Flow (cfs/acre)	1.65			
			Infiltra	tion Rate (in/hr)	0.15				
			Infiltration F	actor (cfs/acre)	0.18				
	Percent Impervious 90								
Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x Infiltration Factor						40.02			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011								
		ack Norberg							
		Homewood Mountain Resort - Winter Calculations							
Watershed	ned ProposedConditions WS-2								
Area (acres)	42.4	Elevation (ft)	6645	Return Period (years)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.27	0.4			12.63			
Collector 1	1853	0.33	0.1	28.2	15	3.12			
Collector 2	1344	0.05	0.04	33.7	15	2.30			
Collector 3	707	0.01	0.025	38.1	1	1.09			
	The State of the S			Total Response ⁻	Time (minutes)	19.15			
				Unit Peak	Flow (cfs/acre)	1.55			
			Infiltra	tion Rate (in/hr)	0.26				
	Infiltration Factor (cfs/acre) 0.32								
	Percent Impervious 90								
	Watershed Peak Flow (cfs): Area x Unit Peak Flow-(1-Percent Impervious) x Area x nfiltration Factor								

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Date	7/29/2011	29/2011							
Engineer	Jack Norbe	ack Norberg							
Project	Homewood	l Mountain Res	ort - Winter C	alculations					
Watershed	Proposed (roposed Conditions WS-3							
Area (acres)	Area (acres) 10.0 Elevation (ft) 6593 Return Period (years)			100					
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.36			
Collector 1	1647	0.30	0.1	8.6	15	3.86			
Collector 2	581	0.07	0.11	9.2	1	1.52			
Collector 3		过 了海上发							
				Total Response	Time (minutes)	19.74			
				Unit Peak	Flow (cfs/acre)	1.45			
			Infiltra	tion Rate (in/hr)	0.27				
	Infiltration Factor (cfs/acre) 0.33								
	Percent Impervious 90								
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	13.08			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

		Security State of the Security Heavy							
Date	ate 7/29/2011								
Engineer	Jack Norbe	ack Norberg							
Project	Project Homewood Mountain Resort - Winter Calculations								
Watershed	Proposed (roposed Conditions WS-4							
Area (acres)	67.4	Elevation (ft)	6652	Return Period (years)		100			
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)			
Overland Flow	500	0.18	0.4			14.26			
Collector 1	2448	0.26	0.1	57.5	15	3.81			
Collector 2	1456	0.04	0.02	64.8	3	0.93			
Collector 3						为42年7月1日日			
				Total Response	Time (minutes)	19.00			
				Unit Peak	Flow (cfs/acre)	1.58			
			Infiltra	tion Rate (in/hr)	0.51				
			Infiltration F	actor (cfs/acre)	0.62				
	Percent Impervious 90								
Watershed Pea Infiltration Facto	and the second second second second): Area x Unit	Peak Flow-(1	Percent Impervio	ous) x Area x	98.43			

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

Nichols Consulting Engineers, Chtd.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Placer County Flood Control and Water Conservation District Small Watershed Peak Flow Worksheet

					The second second					
Date	7/29/2011	7/29/2011								
Engineer	Jack Norberg									
Project	Homewood	Iomewood Mountain Resort - Winter Calculations								
Watershed	Proposed (Conditions WS-	5							
Area (acres)	5.4	Elevation (ft)	7408	Return Period (years)		100				
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)				
Overland Flow	500	0.19	0.4			14.04				
Collector 1	631	0.22	0.1	4.8	3	1.32				
Collector 2										
Collector 3										
				Total Response	Time (minutes)	15.36				
				Unit Peak	Flow (cfs/acre)	1.75				
	Infiltration Rate (in/hr) 0.22									
			Per	cent Impervious	90					
Watershed Pea Infiltration Facto	8.34									

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

Nichols Consulting Engineers, Chtd.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Placer County Flood Control and Water Conservation District Small Watershed Peak Flow Worksheet

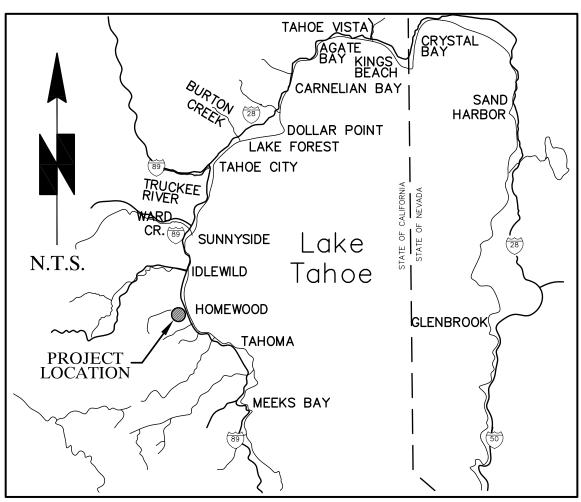
Date	7/29/2011	7/29/2011								
Engineer	Jack Norbe	ack Norberg								
Project	Homewood	Homewood Mountain Resort - Winter Calculations								
Watershed	Proposed (Proposed Conditions WS-6								
Area (acres)	2.2	2.2 Elevation (ft) 7565 Return Period (years) 100								
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)				
Overland Flow	180	0.32	0.4			6.52				
Collector 1	376	0.30	0.22	2.2	3	1.54				
Collector 2										
Collector 3										
				Total Response	Time (minutes)	8.06				
				Unit Peak	Flow (cfs/acre)	2.50				
	Infiltration Rate (in/hr) 0.23									
			Per	cent Impervious	90					
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	-Percent Impervi	ous) x Area x	5.52				

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).
- * The last collector area assumes a 50% reduction in the proposed development area due to stormwater runoff that is mitigated by proposed onsite stormwater infiltration devices.

Nichols Consulting Engineers, Chtd.

1885 S. Arlington Ave., Suite 111 Reno, Nevada 89509 (775) 329-4955

Placer County Flood Control and Water Conservation District Small Watershed Peak Flow Worksheet


		Siliali Wal	ersneu re	ak i low woll	ASHEEL					
Date	e 7/29/2011									
Engineer	Engineer Jack Norberg									
Project	Project Homewood Mountain Resort - Winter Calculations									
Watershed	ershed Proposed Conditions WS-7									
Area (acres)	145.7 Elevation (ft) 7465 Return Period (years) 100									
	Length (ft)	Slope (ft/ft)	Manning's n value	Contributing Area (acres)	Side Slope (ft/ft)	Response Time (minutes)				
Overland Flow	500	0.18	0.4			14.26				
Collector 1	4308	0.27	0.1	145.7	15	5.24				
Collector 2										
Collector 3										
				Total Response	Time (minutes)	19.50				
				Unit Peak	Flow (cfs/acre)	1.70				
	Infiltration Rate (in/hr) 0.28									
			Per	cent Impervious	90					
Watershed Pea Infiltration Facto): Area x Unit	Peak Flow-(1-	Percent Impervi	ous) x Area x	242.84				

- 1. Manning's n Values taken from Placer County, Storm Water Management Manual (SWMM), Table 5-5. Woods with some Underbrush Low = 0.4
- 2. Percent Impervious taken from Placer County, Storm Water Management Manual (SWMM), Table 5-4 "Snow Covered Areas" Elevation 6,500 feet East = 90%
- 3. Infiltration Rates taken from Placer County, Storm Water Management Manual (SWMM), Table 5-3, for Hydrologic Soil Groups with Good Woodland- Coniferous Cover (A = 0.53, B = 0.26, C = 0.15, D = 0.11) and Streets and Roads (A = 0.07, B = 0.06).

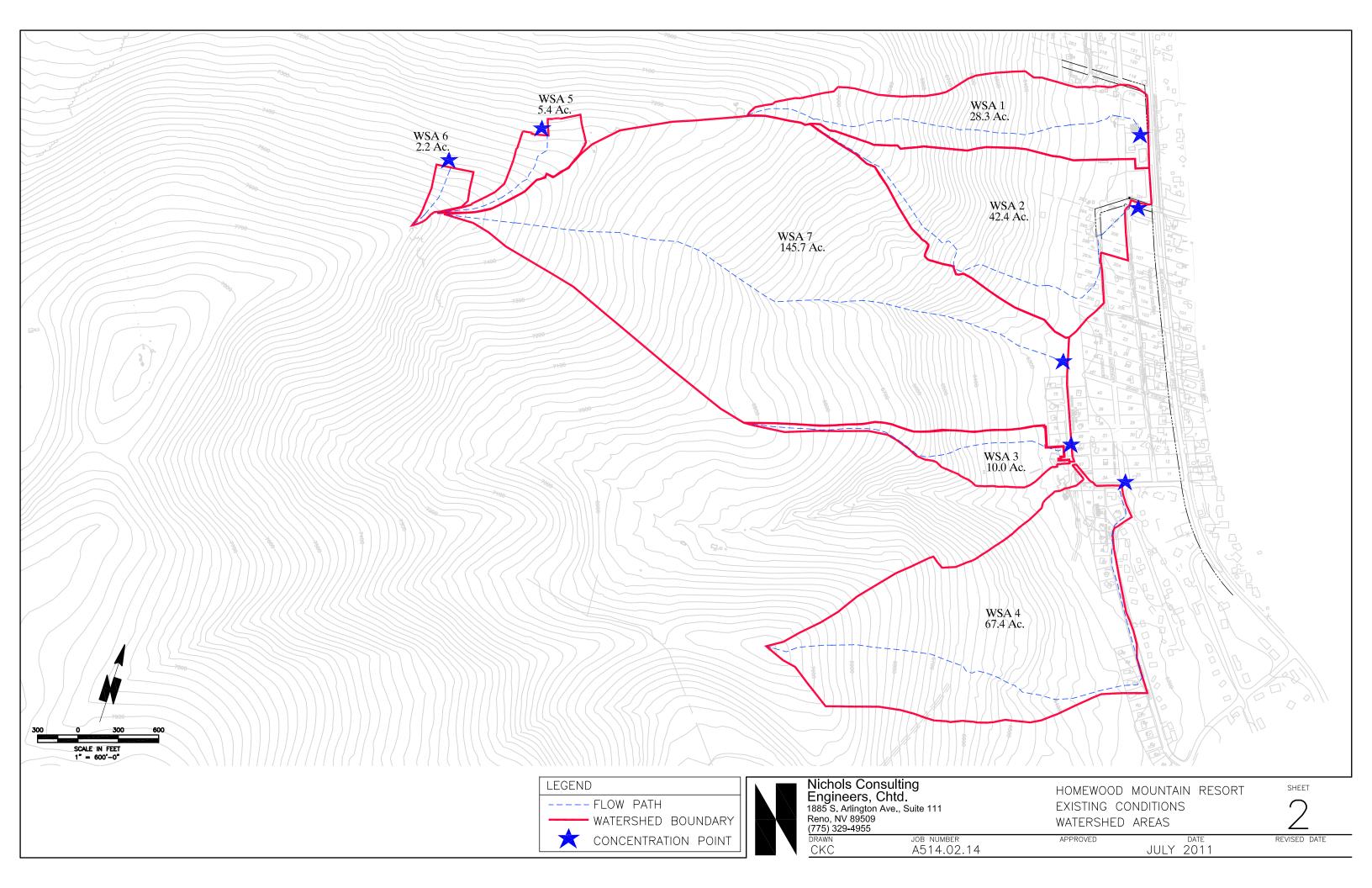
<u>December 2010</u> Placer County, California

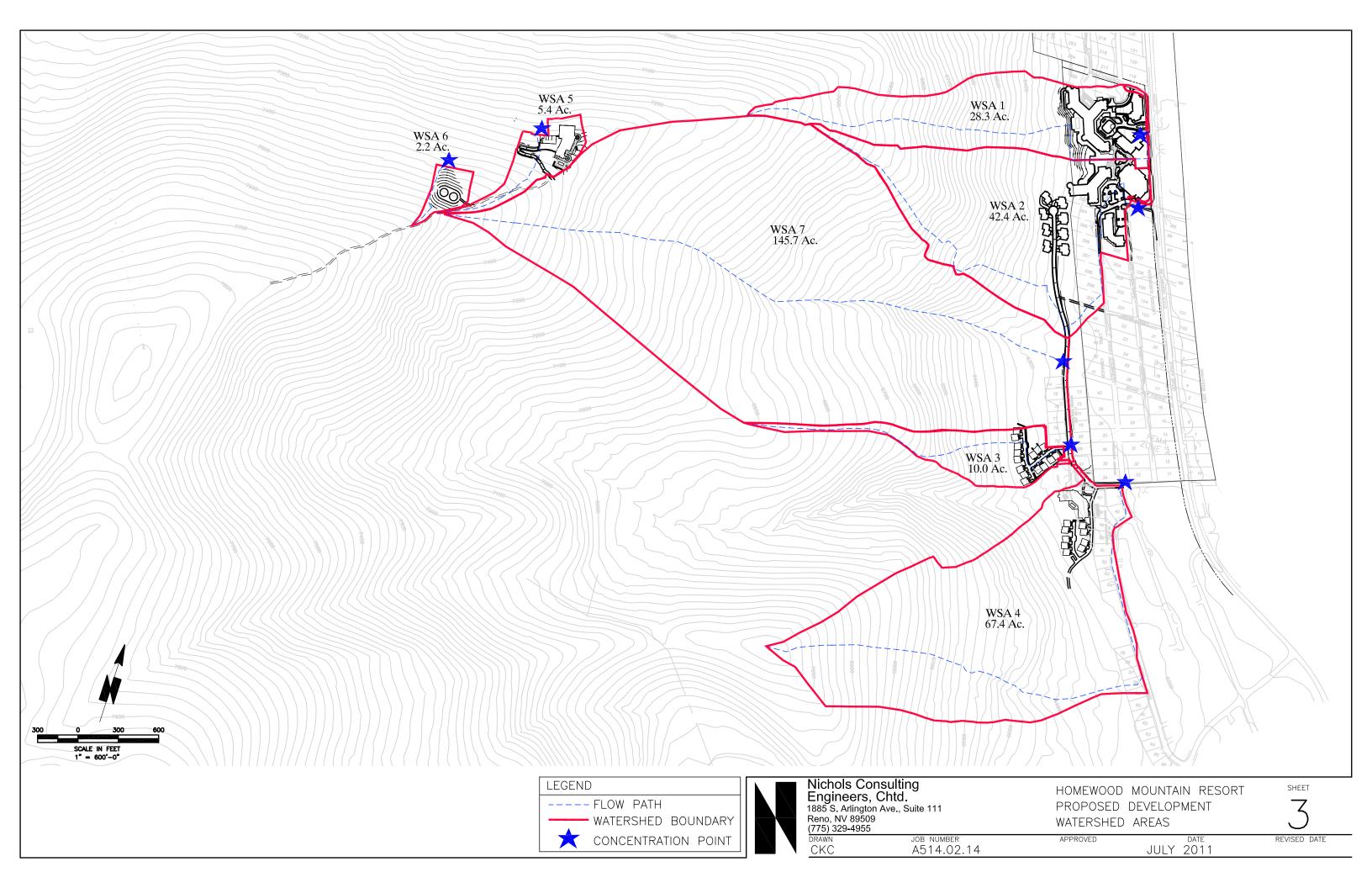
Appendix C

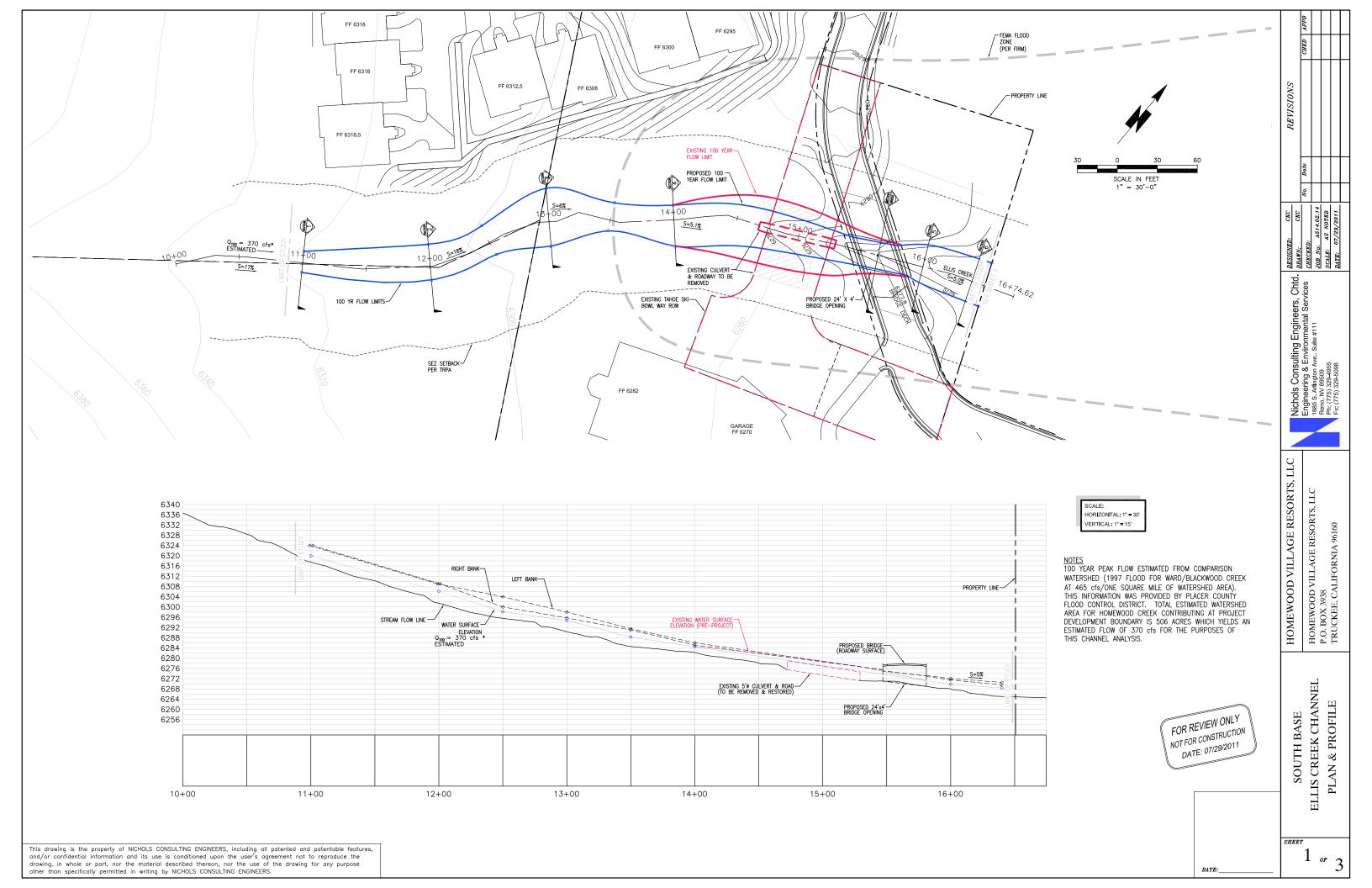
Figures

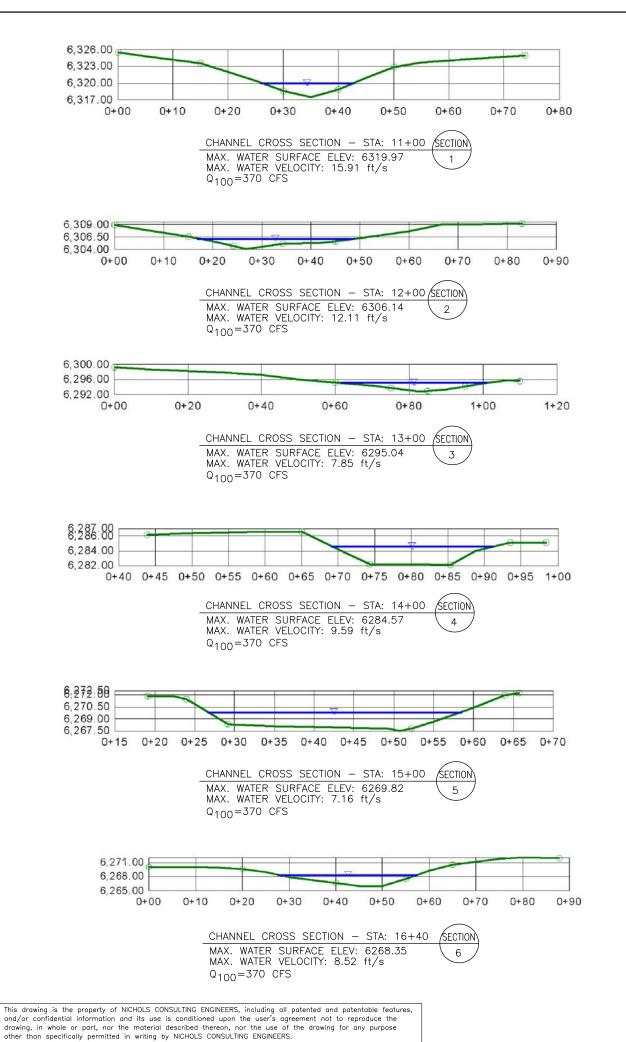
VICINITY MAP

Nichols Consulting Engineers, Chtd. 1885 S. Arlington Ave., Suite 111 Reno, NV 89509 (775) 329-4955


DRAWN JOB NUMBER CKC A514.02.14 VICINITY/SITE MAP HOMEWOOD MOUNTAIN RESORT PLACER COUNTY **CALIFORNIA**


APPROVED

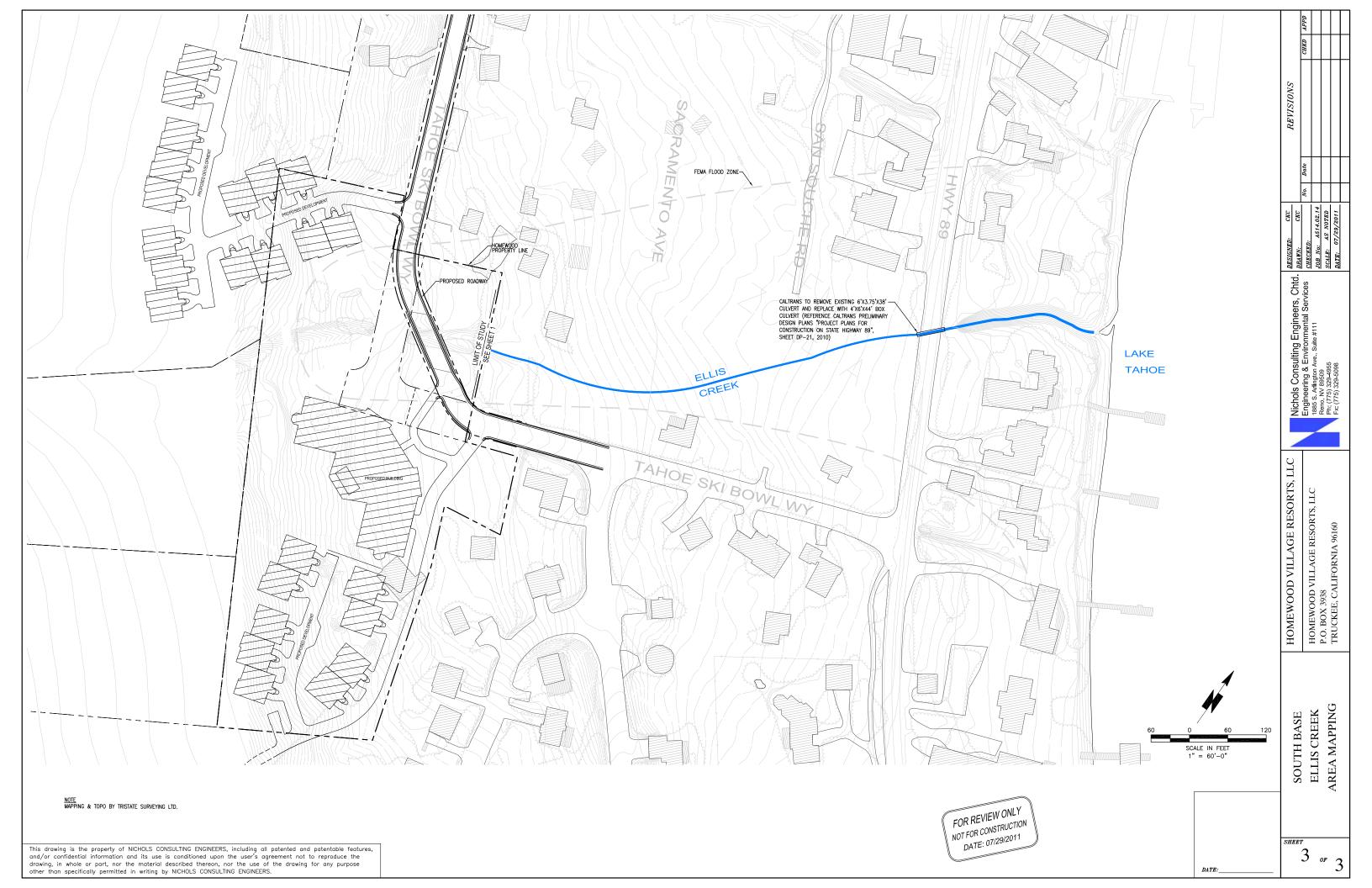

FIGURE


DATE JULY 2011 REVISED

DATE

STREAM DAYLIGHTING **CROSS SECTIONS** SOUTH BASE

HOMEWOOD VILLAGE RESORTS, LLC


HOMEWOOD VILLAGE RESORTS, LLC P.O. BOX 3938 TRUCKEE, CALIFORNIA 96160

Chtd.

s Consulting Engineers, Cering & Environmental Servic

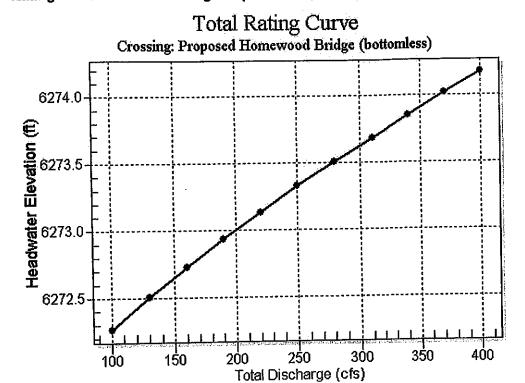
SHEET

DATE

<u>December 2010</u> Placer County, California

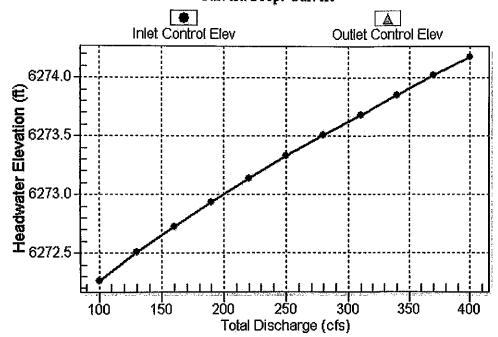
Appendix D

Ellis Creek Channel Analysis

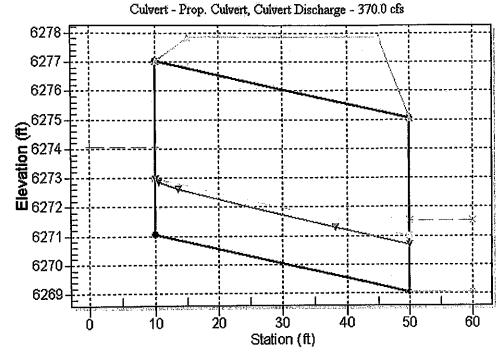

Table 1 - Summary of Culvert Flows at Crossing: Proposed Homewood Bridge

Headwater Elevation (ft)	Total Discharge (cfs)	Prop. Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6272.27	100.00	100.00	0.00	1
6272.51	130.00	130.00	0.00	1
6272.73	160.00	160.00	0.00	1
6272.94	190,00	190.00	0.00	1
6273.14	220.00	220.00	0.00	1
6273.33	250.00	250.00	0.00	1
6273.51	280.00	280.00	0.00	1
6273.68	310.00	310.00	0.00	1
6273.85	340.00	340.00	0.00	1
6274.02	370.00	370.00	0.00	1
6274.18	400.00	400.00	0.00	1
6277.80	1114.98	1114.98	0.00	Overtopping

Table 2 - Culvert Summary Table: Prop. Culvert


Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (it)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Oullet Velocity (ft/s)	Tailwaler Velocily ((t/s)
100.00	100.00	6272.27	1.265	0.0*	1-S2n	0.732	0.790	0.740	1.388	5.628	6.034
130.00	130.00	6272.51	1,506	0.0	1-S2n	0.855	0.945	0.875	1,567	6.185	6.461
160.00	160.00	6272.73	1.727	0.0*	1-S2n	0.978	1.100	0.990	1.723	6.726	6.819
190.00	190.00	6272.94	1.936	0.0*	1-S2n	1.101	1.243	1:103	1,862	7.172	7.128
220.00	220.00	6273.14	2.136	0.0	1-S2n	1.217	1.363	1.222	1.989	7.499	7.402
250.00	250.00	6273,33	2.327	0.0	1-S2n	1.305	1.482	1.305	2.105	7.977	7.649
280.00	280.00	6273.51	2.509	0,0*	1-S2n	1.393	1.602	1,401	2.213	8.324	7.874
310.00	310.00	6273.68	2.684	0.0*	1-S2n	1.481	1.722	1.482	2.315	8.715	8.081
340.00	340.00	6273.85	2.855	0.0*	1-S2n	1.570	1.835	1.575	2.410	8,994	8.274
370.00	370.00	6274.02	3.021	0.0*	1-S2n	1,658	1.936	1.665	2.500	9.260	8.455
400.00	400.00	6274.18	3.179	0.0*	1-S2n	1.746	2.036	1,746	2.587	9,543	8.623

Rating Curve Plot for Crossing: Proposed Homewood Bridge (bottomless)


Culvert Performance Curve Plot: Prop. Culvert

Performance Curve Culvert: Prop. Culvert

Water Surface Profile Plot for Culvert: Prop. Culvert

Crossing - Proposed Homewood Bridge (bottomless), Design Discharge - 370.0 cfs

Site Data - Prop. Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 10.00 ft Inlet Elevation: 6271.00 ft Outlet Station: 50.00 ft Outlet Elevation: 6269.00 ft

Number of Barrels: 1

Culvert Data Summary - Prop. Culvert

Barrel Shape: Arch-Box, Concrete

Barrel Span: 24.00 ft
Barrel Rise: 6.00 ft
Barrel Material: Concrete
Embedment: 0.00 in

Barrel Manning's n: 0.0150 (top and sides)

Manning's n: 0.0500 (bottom)
Inlet Type: Conventional

Inlet Edge Condition: Square Edge with Headwall

Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: Proposed Homewood

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number	
100.00	6270,39	1.39	6.03	4.33	1.13	
130.00	6270.57	1.57	6.46	4.89	1.15	
160.00	6270.72	1.72	6.82	5.38	1.17	
190.00	6270.86	1.86	7.13	5.81	1.18	
220.00	6270.99	1.99	7.40	6.21	1.19	
250.00	6271.11	2.11	7.65	6.57	1.20	
280.00	6271.21	2.21	7.87	6.91	1.21	
310.00	6271.31	2.31	8.08	7.22	1.22	
340.00	6271.41	2.41	8.27	7.52	1.23	
370.00	6271.50	2.50	8.45	7.80	1.23	
400.00	6271.59	2.59	8.62	8.07	1.24	

Tailwater Channel Data - Proposed Homewood Bridge (bottomless)

Tailwater Channel Option: Trapezoidal Channel

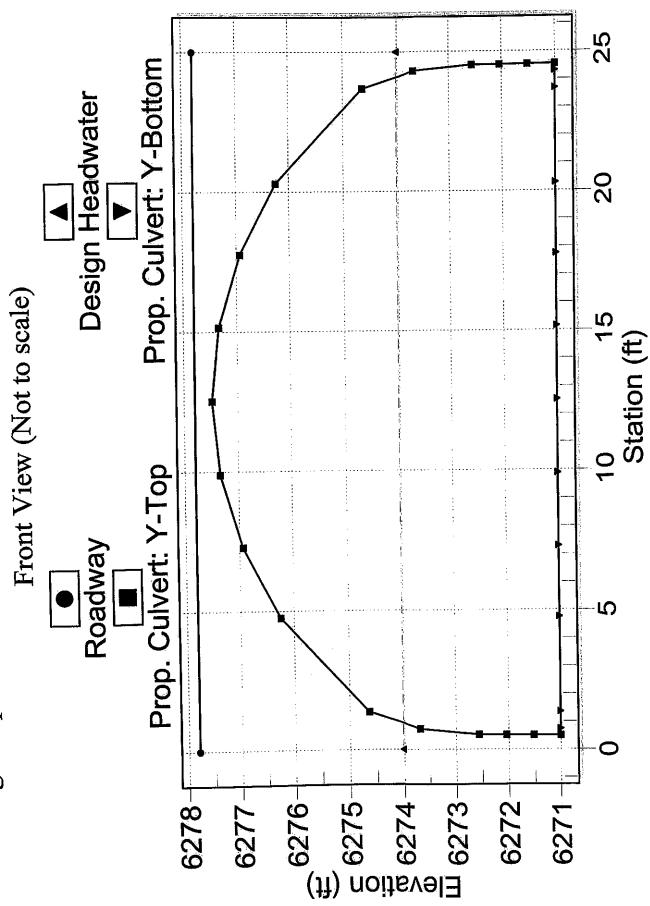
Bottom Width: 5.00 ft

Side Slope (H:V): 5.00 (_:1)

Channel Slope: 0.0500

Channel Manning's n: 0.0500

Channel Invert Elevation: 6269.00 ft


Roadway Data for Crossing: Proposed Homewood Bridge (bottomless)

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 25.00 ft Crest Elevation: 6277.80 ft Roadway Surface: Paved

Roadway Top Width: 30.00 ft

Crossing: Proposed Homewood Bridge (bottomless), Culvert: Prop. Culvert

